
Unix
Crash Course

This document is written as part of a course manual for the Technical Bioinformatics course in the
Academic Medical Center in Amsterdam, the Netherlands.
Written by Rob Wolfram (rsw@hamal.nl), Unix system administrator at the AMC.
This document is redistributable under the GNU Free Documentation License available via
http://www.gnu.org/licenses/fdl.txt
The image on the titlepage originated from “The Unix Hater's Handbook” by Simson Garfinkel,
Daniel Weise and Steven Strassman.

Command-line interaction is denoted in a non-proportional font like this:

$ echo foo

foo

The “dollar space” prefix denotes the “prompt”, i.e. where input from the user is expected.

Table of Contents

1 A brief history of Unix...3
2 The structure of a Unix system...5
3 Files and file-systems...6

3.1 File permissions..9
4 Interacting with a Unix OS...10

4.1 Variables, quoting and globbing...12
4.2 Redirection and piping..15
4.3 Forks, jobs and processes..17
4.4 Scheduling..18
4.5 Shell initialization...19

5 Networking...19
5.1 The graphical user interface..20

6 Shell scripting...21
6.1 Shell functions..22
6.2 Here-document..22
6.3 Flow control..22
6.4 Regular expressions..25
6.5 sed and awk...26

6.5.1 sed...26
6.5.2 awk..27

7 Miscellaneous...28
7.1 Editors...28
7.2 Programming..29

 Appendix A: Manpage Syntax...30
 Appendix B: Common Unix commands..31
 Appendix C: Exercises...35

Unix Crash Course Page 2

1 A brief history of Unix
In 1969 AT&T abandoned a project to develop an operating system named MULTICS (short for
Multiplexed Information and Computing Service). One of the participants of that project was Ken
Thompson and together with a colleague at Bell Labs (then part of AT&T) named Dennis Ritchie
they created a simplified version of MULTICS with a twist. Another colleague (Brian Kernighan)
punned the name Unics (Uniplexed i.o. Multiplexed) and shortly thereafter the name was changed
to Unix. The purpose of the system was mainly for internal research use. Ritchie was also
responsible for the programming language “C”, which was based on Ken Thompson's “B” which
again was based on BCPL. Because of the minimalistic approach of C, the language was very
suitable for system-level programming and soon Unix was ported from PDP assembly language
(a.k.a. machine language) to C. This made the system highly portable and was the main cause of its
popularity, especially in academic environments.

One academic licensee of Unix, namely the Berkeley University in California, modified it and
published their own version named BSD (Berkeley Software Distribution). This was the first of
many specific versions of Unix, though most were either based primarily on BSD or the AT&T
version of Unix, generally known as “System V”. Examples of Unix systems that are available
today are IBM's AIX, IRIX from Silicon Graphics, Solaris from Sun Microsystems, Unixware from
SCO, HPUX from Hewlett Packard and various BSD derivations like MacOS X from Apple. It
would take until the late eighties before the first effort was made to unify the various Unix version
on the system level. This effort was named POSIX (short for Portable Operating System Interface
for uniX). This enabled a programmer to create a program for one system and only need a recompile
to enable the program on another system.

Unix Crash Course Page 3

Dennis Ritchie and Ken Thompson working with Unix on a PDP11/20
Permission to use this picture kindly provided by Lucent Technologies

One system demands special notice since it is not officially Unix, but its look and feel is
indistinguishable from other Unices. This system is generally known as GNU/Linux or simply as
Linux. This started in 1984 when Richard Stallman, member of the Artificial Intelligence team at
MIT started a project to create an operating system named GNU that could be freely modified and
distributed. He used Unix as a model of his system and started with the user-land programs. A
Finnish Computer Science student named Linus Torvalds completed the project by writing a kernel
for Intel-based computers that worked with the GNU programs. The system gained momentum and
enabled people at home to use a Unix based system.

Unix Crash Course Page 4

2 The structure of a Unix system

A Unix system has an onion-like ring structure where the hardware is completely managed by the
kernel and the kernel provides an interface for user-land programs (named “System Calls”) to access
privileged resources. Besides accessing hardware the kernel is also responsible for scheduling
processor time for various processes, privilege separation between various user programs, the file-
system etc.

One of the main user programs is the shell. This is the program with which the user interacts with a
Unix system. Most Unix systems also host a number of user programs named daemons. These
programs are not interactive but run in the background and serve a special purpose. The name is
derived from “Maxwell's demon” and has no religious connotations. Examples of daemons are web
servers, schedulers, mail transport agents, a database server program, login programs etc.

Unix is a multi-user operating system. This implies that programs from different users can run
concurrently on the same system. This includes interactive programs, so multiple users can interact
with the OS at the same time. A user is determined by the OS by her numeric userid, but the system
provides a username that is coupled to the userid to ease the recognition of the various users. There
is one special user with userid 0 and generally named “root”. This user has access to various
resources and files that normal users do not. E.g., when a system program is being installed this is
usually done by root.

Unix Crash Course Page 5

Aside from a username (and corresponding userid) a user is also assigned to one or more groups,
determined by the groupname and corresponding numeric group id. Every user is assigned to at
least one group. Groups enable collective permissions for certain resources. This is handled in the
subject about file permissions below.

When a user wishes to interact with a Unix system she needs to authenticate herself to the system.
In general this is done by providing the username and a password to a login daemon on the system.
If the login is successful, the user's shell is started and a TTY is assigned to the shell. The TTY is
short for “TeleTYpe” and the name is a remnant of the first Unix systems where interaction
happened by typing in commands and have the results printed on an attached printer. The TTY is
necessary for the system to know where the response to commands must be sent to. This TTY can
either be hardwired to some physical connection (like a “dumb terminal” that is connected to the
system via a serial line) or it can be a logically assigned name when the user interacts with the
system via a network connection. In the latter case we name it a “Pseudo-TTY” since no real
hardwired device is used.

When a user interacts with the system, there is a myriad of small tools that can be started. The Unix
philosophy is to have a toolbox with many small tools that can do very little (e.g. sort lines of text)
but are extremely powerful in the small domain that they address. By combining the tools you can
create many computing functionalities for specific tasks. This is treated more in-depth in section 4.2
about redirection and piping.

3 Files and file-systems
A Unix system has one single hierarchy of files and directories. Unlike e.g. DOS and Windows,
Unix does not know “drive letters” or similar system. Devices (like hard disk partitions, CDRoms,
Flash cards etc.) can contain a file-system. This is an organization of files and directories in a tree
structure. The various file-systems are combined into a single tree by connecting the root node of
every file-system to a directory of the tree that existed until that moment. This connecting is called
“mounting” and the directory where the file-system is mounted is called the “mount point”. After a
file-system has been mounted into the unified tree, its files can be accessed in the same manner as
you access files in other directories of the file-system. The root node of the unified tree is denoted
with a single forward slash (/) and is called “root”. The slash character is also the directory
separator when denoting the complete path of a file (e.g. /usr/bin/ssh). The next figure gives
an idea of what a Unix file-system might look like. The areas that are marked with a dashed line
indicate separate file-systems.

Unix Crash Course Page 6

Note that /usr/local is mounted on a file-system that is itself mounted on the “root” file-
system.

Though there are differences between the layout of the unified file-system on various Unices, there
are some general guidelines of the purpose of various directories:
/bin: contains binaries that are used by all users
/sbin: contains binaries that are primarily used by the superuser (user root)
/dev: contains device files (explained later)
/lib: contains shared libraries for the programs
/etc: contains initialization and configuration files especially for daemons
/home: placeholder for the home directories of different users
/var: variable files (log files, mail spool etc)
/tmp: a directory that is writable by all users, suitable for temporary files
/mnt: serves as a mount point for temporarily mounted file-systems
/usr: a “mini unified tree” which contains binaries, libraries etc which are not needed during

system maintenance mode and thus can be on a separate file-system. Most additional
programs go into the /usr tree

/usr/local: a placeholder for non-standard and locally built software
/usr/src: a placeholder for software that is being built locally
/usr/share: a repository for documentation, dictionaries and the like

Unix Crash Course Page 7

On Unix, files are used to access most resources. On most Unix file-systems a file is denoted by an
inode. This is a block of “meta-data” on the file-system and contains the following items:

• An inode number
• The file type
• The file size
• The owner of the file
• The goup that has “group ownership”
• The file permissions
• A link count
• The (last) access time (atime)
• The modification time (mtime)
• The modification time of the inode (ctime)
• The used blocks (direct, indirect and double indirect pointers)

Note the glaring omission of a filename. More on that in a short while. As the list shows, a file is
denoted by a number, but this number is not unique throughout the unified directory tree. It is only
unique within a single file-system. The file type can either be an ordinary file, a directory, a
symbolic link or a device file. Indeed, a directory is a file just like all others. Its contents is a table of
filenames and the inode that the filename points to. There are always at least two entries present in
each directory, one is denoted by a single dot (.) and refers to the inode of the current directory and
the other is denoted by two dots (..) and refers to the inode of the parent directory. As you see
here, a filename is just a label that points to an inode. There seems to be no hindrance for multiple
labels to point to the same inode. Indeed there isn't. A file can have multiple filenames. This is
called “hard linking”. In the inode a count is kept of all filenames that link to it. If a file is being
“deleted”, in fact just the directory entry is removed and the link count in the inode is decremented.
Only if the link count reaches zero will the blocks used by the file be freed. Technically it is
possible to create a hard link to a directory (. and .. are hard links) but administratively it is
prevented because that could lead to ambiguities. Note that since a filename links to an inode, hard
links (i.e. multiple filenames to the same inode) cannot cross the file-system boundary.

A Unix filename can contain almost any ASCII character. The only characters that are disallowed
are the / (being a directory separator) and the null character (not to be confused with the character
that represents the numeric 0, the null character is the character that denotes a string end in the C
language). Though “control” characters such as a carriage return or a bell character are possible in
filenames, their use is discouraged. Files on a Unix system don't require mandatory “filename
extensions”. A dot is a valid filename character just like any other. Nonetheless using trailing
characters in a filename comparable to filename extensions increase transparency and are quite
common. Some commands consider filenames that start with a dot as “hidden”. This is not a feature
of the filesystem, but of the individual command. Early Unix file-systems had a filename limit of 14
characters but most modern file-systems allow filenames up to 255 characters. Another important
aspect to note is that filenames on a Unix system are “case sensitive” (as is most of Unix), which
means that the files README, ReadMe and readme are three different files.

A symbolic link is a special file that is a pointer to a filename (eventually including a directory
path). Note that this is a feature of the file-system, so a program can access a symbolic link just like
it can any file and it will get the data in both cases. A symbolic link has the advantage that it can
cross file-system boundaries and you can easily recognize what file it points to. On the other hand,
given a file there is no direct way to determine if there is a symbolic link pointing to it, let alone
which. The main disadvantage is that, since it's a simple pointer, there is no sanity check to
determine if the file or directory pointed to really exists. If a symbolic link points to a non-existing
file, we call it a “dangling link”.

Unix Crash Course Page 8

Device files are, as their name implies, files that can be used to access peripheral devices. There are
two kind of devices, namely block devices files and character device files. They either access the
devices in blocks of 512 bytes or single bytes. A device file has two numbers instead of the filesize,
a major and a minor number. The major number defines which kernel driver will be accessed and
the minor number is used by the kernel driver to distinguish between devices. E.g. two disk
partitions will have the same major number but different minor numbers. Only the superuser can
create device files but they can be used (depending on permissions) by ordinary users. The main
advantage of this approach is that a program can access data on a device just like like it would with
any other file. This keeps the programs simpler. One device file that is always present on Unix is
/dev/null. All data that is sent to this device file is discarded.

There are also other kind of files like “named pipes” and “socket files”, but these are outside the
scope of a crash course.

3.1 File permissions

Of every file the ownership is determined by the “user” and “group” entries in the inode. Together
with the file permissions this enables a pretty fine grained but still easily manageable access system.
A file listing might look like the following:

Permissions are defined for 3 sets of users, namely the owner of the file, all users that belong to the
group that holds the group ownership, and users that do not belong to the two previous sets. For
every set a bit is set or cleared for read(r), write(w) and execute(x) permissions.

When considering ordinary files, reading and writing refer to accessing the content of the file itself.
The execute bit denotes that the file is a program or script that can be run. The filename does not
need to have a special format (like ending with .exe) to be executable.

On directories the permissions work the same way, if you keep in mind that a directory is a file just
like any other. The read-bit denotes that you can view the content of a directory, i.e. you can see
which files are in the directory, what its permissions and ownerships are etc. but you cannot access
the files yet . For that, you will need to be able to enter into the directory and that's where the
execute-bit comes in. It is possible to execute or modify a file in a directory but not being able to see
what is in the directory. This happens if the directory has the x bit set, but the r bit cleared. The
write-bit on a directory denotes being able to create or delete files or change filenames. Remember
that these actions make a change to the directory, not the file. So it is possible to delete a file that
you don't own yourself if you only have write access in the directory it resides in.

Unix Crash Course Page 9

Device files only use the read and write bits to determine if a user can get data from a device or send
data to it. The execute-bit is not used at all.
Symbolic links do not use the permission bits at all. Instead, the permission of the file pointed to is
used. Most Unices just set all bits for verbosity but they serve no function.

Besides these permission bits there are 3 more that can be set for files and directories, namely the
setuid, setgid and sticky bit, but these are beyond the scope of this course.

4 Interacting with a Unix OS
After logging into a Unix system, you are presented with a prompt of your login shell. There are a
few shells available, all with their own features and drawbacks. The most basic shell on most Unix
systems is the “Bourne shell”, named after Stephen Bourne who wrote it (its path is generally
/bin/sh). Though it lacks many features that make interacting with the system easy, it is the
“greatest common denominator” on all Unix systems and thus the preferred shell for writing scripts.
The original BSD versions provided the C Shell (csh) as the default login shell and only provided
the Bourne shell for scripting compatibility. csh has more features than sh but differs enormously
from sh in its syntax. In later years a rather advanced shell that uses the csh syntax was released.
This is tcsh (the “t” is from TENEX, an OS that inspired some of the features in tcsh). Because
of its interactive features it soon became the favorite shell of many Unix users and frequently still is.
Many commercial Unices provide the Korn shell (ksh) for interactive use. This shell is based on
the Bourne syntax and many of its features are derived from csh. It is named after its writer David
Korn. Since it is available on most commercial Unices while these systems lack the other advanced
shells by default, it is often the preferred shell for consultants of diverse Unix systems. The GNU
system (and thus GNU/Linux) provides the “Bourne-Again Shell (bash). This is an advanced shell
that is backward compatible with the Bourne shell. Because of the popularity of GNU/Linux this is
likely the most popular shell. A recent shell to emerge which combines both syntactical as
interactive features of ksh, bash and tcsh and some unique features of its own is the Z Shell
(zsh). This is the preferred shell of the writer of this document but sadly still not known enough to
be installed by default on most Unix systems.

For the purpose of this course we will limit ourselves to the Bourne shell except where noted
otherwise.

A shell command takes the form of:

commandname [argument list]

Arguments are optional, depending on the command and are separated by spaces. Most commands
know a few special arguments consisting of a dash followed by a single character (like -a). These
arguments are known as options because they change the behavior of the program itself. A few
programs recognize complete words as options (e.g. find) and some recognize both letters and
words, where words have two dashes instead of one (especially GNU tools).

Every command has 3 file descriptors available. These are “standard input” (a.k.a. stdin), “standard
output” (a.k.a. stdout) and “standard error” (a.k.a. stderr). They define where data is read from or
where it is printed to. Stdin is generally attached to the keyboard of the TTY and both stdout and
stderr are connected to its screen. Most programs that read their input from stdin keep expecting

Unix Crash Course Page 10

more input until the End of File (EOF) signal had been reached. If stdin is connected to the TTY's
keyboard, this signal can be generated with the <CTRL+D> key combination.
Multiple commands can be entered on a single line by seperating them with semicolons (;). The
commands will then be executed sequentially as if they were entered separately. There are hundreds
of commands that are common on all Unices. We will look at a few of these that are used
frequently. This will just be a boring summary.

man – Display manual page. Most Unix systems have a very comprehensive set of documents. To
know how to use a command, use man commandname. To search for a command based on a
keyword, use man -k keyword.
echo – Display text on the screen. echo prints all its arguments to stdout. It is a “shell builtin”
command, which means that no external program needs to be started for the command.
read – Read a line from stdin and assign it to one or more variables. This too is a shell builtin
command.
ls – LiSt the directory content. Filenames that start with a dot are normally hidden for this
command (and for globbing which will be dealt with later). To see all files including “hidden” files,
the option -a must be used. The option -l causes a “long” listing including file owership,
permission etc.
cp – CoPy files. This command requires at least two arguments. The last argument is the
destination and all other arguments are source files. If the destination is a directory, the source
file(s) are copied with the same name into the destination directory. If only two arguments are
supplied and the destination is a file or doesn't exist yet, the source file is copied as the file with the
destination's name.
mv – MoVe files. This is analogous to the cp command, but files are either moved to a new
directory or renamed. This command cannot move files across file-systems since only the directory
entry is changed, not the file itself. Some versions of mv (like the GNU version) emulate a cross-
file-system mv by copying the files to the destination and deleting the source files.
ln – LiNk files. Analogous to the cp command, this will create hard links to the source files. If the
option -s is used, symbolic links are created instead.
rm – ReMove files (in fact: unlink a filename). This is used to remove files (not directories). A
Unix OS doesn't make a habit of asking if you are sure you want to do something, so use this
command with care! If the option -r is used with a directory as an argument, it will recursively
remove the complete directory tree. Very dangerous!
pwd – Print Working Directory. This will print the current directory to stdout.
cd – Change Directory. Change the current directory to the argument or to the users home directory
if no argument is given.
mkdir – MaKe DIRectory.
rmdir – ReMove DIRectory. This only works if the directory is empty. To remove a directory
including all its content, use rm -r.
chmod – CHange file MODe. This changes the file permissions for user, group or other.
chgrp/chown – Change group or user ownership. chown can only be used by the superuser.
chgrp can be used by ordinary users, but only to change ownership to a group that the user is a
member of.
umask – Set file creation mask. This command takes an octal number as argument that defines
which permission bits must be cleared when creating a new file.
cat – CATenate file(s). Without argument, this will copy stdin to stdout. When filenames are
passed as arguments the contents of all these files are copied successively to stdout.
head – Print the first few lines of either stdin or the file(s) in the arguments to stdout. With the
option -n the number of lines to print can be specified.
tail – Analogous to head, but print the last few lines.

Unix Crash Course Page 11

find – Find files on that pass given constraints. This is a very powerful command and often used
on Unix systems.
wc – Word Count. Count the number of characters, lines and/or words from stdin or files in the
arguments.
date – Print or modify the system date and time. Notice that Unix keeps track of the time
separately from the hardware clock and counts in seconds from 1 Jan. 1970 00:00 UTC. An
environment variable (see next item) decides how the time is represented.
time – Measure the time it takes to run a program. This will execute all its arguments as entered
and print the running time to stderr.
sort – sort a file or stdin based on its lines.
uniq – remove duplicated lines. With the proper options this can also print only unique or non-
unique lines. uniq expects duplicated lines the input to be consecutive.
expr – evaluate expressions (numeric, string and boolean)
tar – tape archive. Create an (uncompressed) archive of a set of files to stdout, a file or a (tape)
device.
compress/uncompress – (Un)compress a (single) file or stdin. Because of patents on the LZW
algorithm that compress uses, the GNU project developed a patent-free compressor named gzip.
This gained much popularity and is a “de facto” standard today.
xargs – transfer stdin to arguments for a command (see the item on Redirection and Piping)
grep – Search for lines with specified substrings (see the item on Regular Expressions, in the
Scripting chapter).
sed – Stream Editor. Change the text from the input stream and write the changed text to stdout
(see the Scripting chapter).
awk – A scripting language (see the Scripting chapter).
more – Print the input to the screen, one page at a time.

4.1 Variables, quoting and globbing
You can assign a (string) value to a variable and access that variable at a later time. Like many other
aspects of the Unix OS, variable names are case sensitive but often uppercase names are used.
Whitespace is not allowed in variable names. Consider the next example:

$ echo $HW

$ HW="Hello, World."
$ echo $HW
Hello, World.
$

It is important to omit whitespace around the assignment character when assigning a value to a
variable. Accessing the variable is done by preceding the variable name with a dollar character ($).
In most cases it is important to “export” the variable name so that its value will be present in
subshells (more on that in the chapter on “forking”. The command to do this is
“export VARIABLE”.

A few variables are predefined after logging in. These are generally referred to as “environment
variables”. A few commonly used environment variables are:

Unix Crash Course Page 12

$PATH – this is a colon-separated list of paths on the file-system where the shell will search for an
external command to execute. Note that the current directory is not searched for a command unless
it is part of the $PATH variable. In general is it discouraged to do include the current directory.
$MANPATH – like $PATH this is a colon-separated list of paths. These are searched for
documentation when the man command is issued.
$LD_LIBRARY_PATH – This path is searched by the dynamic loader for shared libraries.
$USER – The username of the logged-in user.
$HOME – the path to the users homepage.
$PS1 – The prompt string that indicates the shell is ready to receive a command. On most Unices
this defaults to a $ sign for ordinary users and a hash (#) for the superuser.
$PS2 – The prompt command to use on a second line when the issued command line continues
(generally '>')
$PWD – the path of the current working directory.

There are also a few special variables available. They are generally used in shell scripts. These are:
$0 – The name of the issued command (without arguments).
$1 – The value of the first argument to the command.
$2 .. $9 – Analogous to $1.
$# – The number of arguments passed to the command.
$* – All arguments given to the command.
$@ – The same as $*, but the arguments that contain whitespace remain single arguments.
$? – The “exitcode” of the last command.
$$ – The “process id” of the current shell.
$! – The process id of the last “background” process.

A variable can be enclosed within curly braces to disambiguate the name.

$ echo $USER
rsw
$ echo $USERTEST

$ echo ${USER}TEST
rswTEST
$

The way variables are handled is affected by quoting. As mentioned earlier, command line
arguments are separated by whitespace. That introduces the need for telling the shell when
whitespace is not an argument separator but part of an argument. For this, you can use single (') or
double (") quotes. The main difference between these two is that variable names are expanded in
double quotes, but not in single ones. Consider this example:

$ HW="Hello, World."
$ echo "$HW"
Hello, World.
$ echo '$HW'
$HW
$

Variable expansion is done by the shell before evaluating the quotes, so if the variable contains
whitespace in its value, it will still be passed on to the command as a single argument. Another way

Unix Crash Course Page 13

to pass whitespace verbatim to the command is by escaping it. We do this by preceding it with the
backslash character (\). Escaping can be used on other characters as well. If a character has a
special meaning ($, |, &, *, ? etc), preceding it with a backslash will pass it on verbatim. The
following example shows that:

$ HW=Hello,\ World.
$ echo $HW
Hello, World.
$ echo \$HW
$HW
$ echo \\$HW
\Hello, World.
$

There is one more quote character: the backquote a.k.a. backtick (`). The purpose of this quote is
command substitution. You can enter a command of which a part is another command in
backquotes. The shell will first evaluate the backquoted command and substitute its output in the
command line. In the following examples the “current” date is April 2, 2006:

$ ls
log.20060301 log.20060308 log.20060315 log.20060322 log.20060329
log.20060302 log.20060309 log.20060316 log.20060323 log.20060330
log.20060303 log.20060310 log.20060317 log.20060324 log.20060331
log.20060304 log.20060311 log.20060318 log.20060325 log.20060401
log.20060305 log.20060312 log.20060319 log.20060326 log.20060402
log.20060306 log.20060313 log.20060320 log.20060327
log.20060307 log.20060314 log.20060321 log.20060328
$ wc log.`date +%Y%m%d`
 1 8 54 log.20060402
$

With modern shells this can also be accomplished by enclosing the command between $(and). This
has the advantage of nesting the commands:

bash$ wc log.$(expr $(date +%Y%m%d) – 100)
 630 1616 40744 log.20060302
bash$

Another job of the shell is wildcard expansion. This is known in Unix as globbing since this job was
done in the earliest Unices by an external program named “glob”. The primary glob characters are
the asterisk (*), the question mark (?) and the square brackets ([]). Globbing will work on the file-
system and expand the glob characters to matching filenames. The asterisk will expand to zero or
more characters, the question mark will expand to a single character and a number of characters
within square brackets will expand to a single character that is mentioned in the brackets. You can
also specify one or more ranges of characters in square brackets by using the dash (-) character. To
expand files to the negation of the characters in the brackets, place an exclamation mark (!) as the
first character in the brackets. Confused? Hopefully the next example will clarify it:

Unix Crash Course Page 14

$ ls
bar foo foo_4 foo_45 foo_5 foo_A foo_B foo_a foo_ab foo_b
$ ls foo*
foo foo_4 foo_45 foo_5 foo_A foo_B foo_a foo_ab foo_b
$ ls foo_?
foo_4 foo_5 foo_A foo_B foo_a foo_b
$ ls foo_??
foo_45 foo_ab
$ ls foo_[abcde]
foo_a foo_b
$ ls foo_[A-Z0-9]
foo_4 foo_5 foo_A foo_B
$ ls foo_[!A-Z0-9]
foo_a foo_b
$ ls f?o*b
foo_ab foo_b
$

Note that like the ls command, globbing considers files that start with a dot to be hidden files:

$ ls -a
. .. .foo foo foo_A foo_B foo_a foo_ab foo_b
$ echo *
foo foo_A foo_B foo_a foo_ab foo_b
$

Modern shells also expand the tilde (~) to the user's home directory and ~foo to the home directory
of user foo. Quoting any glob character will pass it verbatim to the program and prevent the
globbing to occur.

It is important to understand that the globbing is done by the shell, so the program that you start
cannot verify if you used a glob character or if you entered all of the arguments yourself. In the first
example, when we issued “ls foo_??” two arguments were passed to ls, not one. The big
advantage of this system is that the programs can be simpler since they don't need to implement
globbing code themselves and that the globbing is consistent for all programs. The disadvantage is
that it is possible that globbing can cause the argument list to become too large, resulting in an error.
This is solvable with the xargs command (more on that later).

4.2 Redirection and piping
As mentioned earlier, a command has 3 file descriptors available: stdin, stdout and stderr. These are
numbered file descriptor 0, 1 and 2 respectively. For advanced use there are more available. Also
mentioned earlier is that the file descriptors are connected to the TTY's keyboard (FD0) and screen
(FD1 and 2) by default, but this can be changed. To redirect an input stream, use the “less than” sign
(<) and to redirect output, use the “greater than” sign (>). This sign is preceded by the file descriptor
number. E.g., if you want to redirect the standard input from a file, you do:

command 0< /path/to/the/file

To redirect standard error to a file, use:

command 2> /path/to/outputfile

Unix Crash Course Page 15

If the file descriptor number is omitted, either stdin (in case of input) or stdout (in case of output) is
assumed. Sometimes it is required to redirect both stdout and stderr to the same output channel (e.g.
redirect both to the same file). For that you have to “connect” stderr to the stdout channel and only
redirect stdout. That is done like this:

command > /path/to/file 2>&1

In this case the file descriptor numbers are mandatory.

Output redirection normally overwrites existing files or creates a new one when needed, but there is
a way to append output to an existing file. This is done by using two “greater than” signs instead of
one:

command >> appended_file

The << redirection also exists, this is called the here document and is mainly used in scripts. We
will look at it in chapter 6.2.

Besides redirecting output to files or input from files, it is also possible to connect the output of one
command to the input of another. This is called piping and uses the “pipe character” (|). This lies at
the heart of the Unix philosophy, i.e. combine small tools to build the needed functionality.
Example:

command1 | command2

This will connect stdout of command1 to stdin of command2. Note that command2 does not wait
for command1 to finish, command2 starts immediately and eventually waits for input. Only stdout
can be connected to the “left” side of the pipe, but you can connect stderr to stdout (2>&1) to have
both piped to the next command.

Two commands that are used extensively with pipes are xargs and tee. xargs will transfer its
stdin to arguments for the command that is specified in its own arguments. An example:

find /var/log -mtime -4 -print | xargs grep -l 'kernel error'

The first part here will print a list of filenames in the /var/log tree that are modified or created
less than 4 days ago and xargs will transfer those filenames as arguments for the grep command,
which will print only those filenames (-l) of the list that contain the text “kernel error” in their
content.
tee is used if you want to save the output of a command to a file and still use the same output as
piped input for another command. The syntax is:

command1 | tee /path/to/outputfile | command2

This idea is derived from a plumber who uses a T-piece in pipe-fitting.

If you want to concatenate stdout and/or stderr of multiple commands and pipe the combined result
into the next command, you can group commands in two ways, with parentheses or curly braces.
The difference is that commands in parentheses are executed in a subshell, while commands in curly
braces are executed in the current shell. The following should clear it up a bit.

Unix Crash Course Page 16

$ echo Foo ; echo Bar | wc
Foo
 1 1 4
$ { echo Foo ; echo Bar ;} | wc
 2 2 8
$ (echo Foo ; echo Bar) | wc
 2 2 8
$

As you can see, the space after the opening curly brace is mandatory, as is the terminating
semicolon before the closing brace.

4.3 Forks, jobs and processes
When an external command is issued on the command line, a subshell is started and the command is
executed in that shell. The “parent” shell then waits for the “child” to finish. This process is called
forking. This has a few consequences. Changes in the environment of the child process will not be
visible in the parent. Also variables are only inherited in the child shell if they are exported with the
export command. The following shows just that:

$ pwd
/home/rsw
$ VARPARENT=foo
$ VARBOTH=bar
$ export VARBOTH
$ echo $VARPARENT
foo
$ echo $VARBOTH
bar
$ echo $VARCHILD

$ sh
$ # Now we're in a subshell
$ echo $VARPARENT

$ echo $VARBOTH
bar
$ VARCHILD=baz ; export VARCHILD
$ VARBOTH=qux ; export VARBOTH
$ echo $VARCHILD $VARBOTH
baz qux
$ cd /tmp
$ exit
$ # Now we're back in the parent shell
$ pwd
/home/rsw
$ echo $VARBOTH
bar
$ echo $VARCHILD

$

Unix Crash Course Page 17

It is possible to execute a script without forking a subshell. This is frequently used for setting
variables from a script which should stay visible in the “parent” shell. This process is called
sourcing a script. In Bourne-like shells, it is done with the “dot” command like this:

. scriptfile

Note that this is only allowed with shell scripts, not with binary executables. It is possible to start a
program (whether script or binary) in the context of the current shell, but after that script or program
finishes a signal is sent to the parent of your current shell and your current shell exits. If it was your
login shell, this will cause a logout. To accomplish that, use

exec program program_argument_list

Every process on a Unix system has a process id (PID). With the command ps you can get a lot of
information on the various processes, like their PID, the PID of their parent process, the user who
started the process, the TTY it's connected to etc. With the kill command you can send a signal to
a process. Some signals (like SIGINT, the Interrupt signal) are handled by the process itself (most
programs will exit cleanly if they receive SIGINT) while others (e.g. SIGKILL) are handled by the
kernel. With the kill command you can send any signal to any process. Of course a process will
only act on the signal if you have the proper permissions. If you interact with a program via the shell
you can send a few signals to it via key combinations. The <CTRL+C> keys send a SIGINT to the
process and the <CRTL+Z> keys send a SIGSTOP which normally suspends a process (see the next
item on jobs).

A program can be started in the background. That means that the program starts and the shell
prompt is returned so that another command can be issued. Starting a program in the background is
done by appending an ampersand (&) to the end of the command line:

commandname arguments &

A running program can be suspended by sending it a SIGSTOP signal. This can be done by pressing
<CTRL+Z> on the program's TTY or issuing “kill -STOP PID” (where PID is he program's
process id) from a shell. The jobs command will list all suspended and background processes
started by the current shell. The numbers you see in the listing are not process ids but job ids. You
can access the jobs by preceding the job id with a percent character (%). You can call one of the jobs
to the foreground (your interactive session) by issuing the command fg %jobid. If the job id is
omitted, the current job is assumed (denoted in the jobs listing with a plus (+) sign). Similarly,
you can continue running a suspended job in the background by using the bg command. jobs, fg
and bg are shell builtin commands. When you have active jobs (either in running or in suspended
state) the shell will prevent you from logging out. Some shells may still log out but terminate the
jobs while doing so. To start a program in the background that will keep running after you logout,
use the nohup command. This will start the command without a TTY but send all output to a file
named “nohup.out”.

4.4 Scheduling
Sometimes the need exists to start a program non-interactively on a specified time. This can be
accomplished with at or, if it should be done repetitively, with cron. at expects the command
and command arguments in its standard input. The time and date to execute the command are
specified in its arguments. An example might be:

echo "find /tmp -mtime +30 | xargs rm -f" | at 20:08 tomorrow

This will delete all files in /tmp tomorrow at 8:08 pm which are then older than 30 days.

Unix Crash Course Page 18

If a job needs to run regularly, it can be scheduled with the cron daemon. cron reads its
configuration from a file named crontab which is somewhere in the /var tree on most Unices.
This file can be viewed or edited with the crontab command and has the following syntax:

a b c d e commandname argument-list

The moment of execution of the command is specified in the first 5 fields. All of these arguments
can either be a numerical value as described below or an asterisk as value (meaning all values are
valid). It is possible to put multiple values in a field separated by commas. The moment of
execution is the moment that all arguments are true (except for fields “c” and “e”, the command
runs if one of those is true). Specifying 5 asterisks will execute the command every minute. The
explanation of the first 5 fields is:
a – the minute value of the time of day (can be 0-59)
b – the hour value of the time of day (0-23)
c – the day of the month (1-31)
d – the month (1-12)
e – the day of the week (0-6, 0 is Sunday).
So the example:

5 * * 3,6 2 echo Cron worked on `/bin/date` >> /tmp/myfile

will append text to /tmp/myfile 5 minutes past every hour on every Tuesday in March and June.
Both cron and at lack a connection to a TTY. If output is generated by the command it is sent by
email to the user. at inherits the exported environment variables, but cron has a very limited
environment. Usually it is advisable to include complete paths to the programs in the crontab
entry.

4.5 Shell initialization
After login, the shell will source a few files if they are present. With these file you can set up new
defaults for various environment variables, define often used functions (see par. 6.1) etc. These can
be set system-wide by the system administrator, or by the user on a per-user basis.
The Bourne and Korn shells will source the file /etc/profile on starting a login shell. If the
user has a .profile in her homedirectory, that file will be sourced next. The Bourne-Again shell
will also source these files, but also /etc/bashrc and $HOME/.bashrc on non-login
interactive shells. $HOME/.profile can be replaced with $HOME/.bash-profile. This will
prevent it from being sourced by sh or ksh, so bash-specific extensions can be used. See the
manpage for the various shells for what files are sourced at shell startup.

5 Networking
In the early days of Unix users were connected to the system via physical connections (mostly via
serial lines). There is no fundamental difference between terminals connected with a serial line and
the way a monitor and keyboard are connected to a personal computer. To overcome the proximity
constraint the serial line could be extended via two modems and the telephony network. In those
days one Unix computer could connect to another via a serial line and share files via a set of tools,
collective named UUCP (Unix to Unix CoPy). When TCP/IP networking became available, tools
were developed to enable users to interact with the system via this network. The most common of
these tools were telnet, ftp and the “rsh” tools (rlogin, rsh and rcp). telnet and
rlogin are used for logging in on a remote system and interacting with it. ftp and rcp are used

Unix Crash Course Page 19

for file sharing between two hosts on a network and rsh is used for executing a command on a
remote host and have the results display on the local host. These tools were sufficient at the time,
but these days users are slowly moving to ssh, both for its enhanced security and its ease of use.
ssh is in fact mainly a secure replacement for rlogin and rsh, while the secure equivalent of
rcp is named scp. In the latter verions of the ssh suite a secure replacement for ftp came
available named sftp. Still, both telnet and ftp (especially the latter) are widely in use. From
one system a user issues:

telnet remote_host

and is presented with a login prompt of the remote system.

It is important to understand that there is no fundamental difference between a user who interacts
with a system after logging in with telnet or ssh, and a user who interacts with a system via a
physical connection (serial line or PC monitor and keyboard). Both can freely start any program they
like. That differs from a “service” that is provided and accessible via the network, e.g. a webserver
which enables a CGI program to be executed. In the latter case the program is executed on the
server, but the user is constrained by the webserver in what program to run and how. With shell
access those constraints are absent. The TTY that is assigned to a user who logs in via the network
is determined dynamically. For this reason it is referred to as a “pseudo TTY”. The main difference
between the ssh suite and the other tools is that unlike the latter, the ssh suite uses an asymmetric
cryptographic system to encrypt all data (the same way as SSL encryption in the browser works).

5.1 The graphical user interface
You might wonder what a graphical user interface has to do with networking. On Unix networking
is an intrinsic part of the GUI. Since Unix is a multi-user OS it is often the case that a user is
connected to a Unix system via the network, sometimes from the other side of the world. The Unix
system has to be able to properly display graphical programs to all these users. The GUI system that
is commonly used on a Unix system is called “the X Windowing System” (sometimes shorted as X-
windows or X). It differentiates between the “X server”, i.e. the program that is capable of
displaying graphical content, handling the mouse and keyboard and rendering fonts, and the “X
client”, i.e. the program that requires graphical output. The terms “server” and “client” are a bit
confusing here, since most people expect some big piece of iron when they hear the term “server”
and surely don't expect a workstation to carry that name. But the name makes sense. The
workstation serves the ability to display graphics. In fact, most big Unix systems that host hundreds
or more concurrent users are very capable of running graphical applications but lack graphical
hardware themselves.

Schematically it looks like the following:

Unix Crash Course Page 20

The Unix system uses an environment variable to know where the X server resides. This variable is
$DISPLAY and takes the form of “hostname:a.b” where a and b are numbers. hostname is
either a name or IP address of the X server, a is the display number and b is the screen number. The
display number is mandatory. Most workstations have only a single X server running, so generally
the display number will be 0. Still, it is possible to run multiple X servers on a single workstation.
For the Unix server these will be separate instances. The screen number is optional. If omitted
(along with its preceding dot) a screen number of 0 is assumed. Screen numbers are used to
distinguish multiple screens in a “multi-headed” workstation.

Since the X windowing system is based on network connections, there needs to be some permission
system to decide what X clients can access the X server. If the X server runs on a Unix-based
workstation, the user has two mechanisms for managing access: xhost and xauth. xhost is
used to allow or disallow access to the X server, based on the host that connects. This implies that
all users on that host have write access to the screen and read access from the keyboard and mouse.
Using “xhost +” allows access to all users on all hosts on the network. This is not the preferred
option to chose. xauth uses what is called a “magic cookie” for the permission system. From a
shell in the X environment on the workstation the user lists a “cookie” (a 128 bit value that is
generated on server startup) and enters that with the displayname on the system that needs access to
the X server. That allows only that user on that system access to the X server. This is a lot better,
but still not the best system, both from the perspective of usability as from that of security. As stated
earlier, ssh is chosen partly for its ease of use. This is one such area. ssh can create an X tunnel,
i.e. that it will create a “pseudo displayname” on the Unix system that runs the X clients and add
proper access to that displayname via xauth. Clients that connect to that pseudo display will
access the real X server via a tunnel that is embedded in the encrypted connection between Unix
host and X workstation. This increases the security, especially on the network between X clients and
X server. It also automates the xauth setup which is an improvement from the point of usability.

6 Shell scripting
Multiple shell commands can be put into a file and executed by means of that file. Such a file is
called a shell script. In fact the ability to create a file with the a collection of shell commands
introduces nothing new that cannot be done on the command line. Still, it is deemed important

Unix Crash Course Page 21

enough to write a chapter about it. The reason is that certain aspects of the shell, like flow control,
are not frequently utilized on the command line but frequently are in scripts.

Like most other scripting languages in the Unix environment, the hash character (#) is treated as a
comment indicator. Anything following a hash up to the end of line is silently ignored – except for a
single case. As stated before, the way Unix determines if a file is executable is by the execute-bit in
the permission bits. This is equally true for scripts, so there should be a way for the OS to
differentiate between scripts written in Bourne or C shell, awk, perl and a myriad of other scripting
languages. This is done by putting a shebang in the very first line of the script. This has the
following syntax:

#!/path/to/shell optional_arguments

The name “shebang” is probably derived from “shell bang”. The exclamation mark is named a
“bang” in certain Unix contexts (e.g. UUCP). So a Bourne shell script will have the text
“#!/bin/sh” as the first line. That way the OS can determine which interpreter to start for the
script.

6.1 Shell functions
We have seen before that curly braces can be used to group a number of commands for combined
redirection. This construct can also be used to create shell functions. A name can be assigned to a
group of shell commands in braces. These commands are not executed until they are referenced by
the assigned name. Example:

usage() { echo $0 'start | stop | restart' ; }
some more commands
usage

6.2 Here-document
In the item on redirection on page 16 it was mentioned that it is possible to use the << construct for
input redirection. This form of redirecting is called the here-document. It will use all the next lines
as input to the command until the literal word specified after the << is found at the start of a line.
Keep in mind that whitespace preceding a command is generally discarded and that this is used for
indenting shell scripts for verbosity, the here-document is sensitive to leading whitespace. Example:

$ cat << FOO
> Hello, World!
> This is part of a here-document
> FOO
> FOO
Hello, World!
 This is part of a here-document
 FOO
$

6.3 Flow control
For being able to utilize different flows in the script, the shell must be able to assign boolean (true
of false) values. This is accomplished with the exitcode. When a program exits it returns a value to
the shell. If this value is zero, the boolean value is considered true, and if the value is non-zero the

Unix Crash Course Page 22

boolean value is false. This is different from e.g. perl and C, where 0 is considered false and non-
zero true.

The Bourne shell recognizes the following flow constructs: if, case, for and while.

An if statement has the following syntax:

if first_command
then
 #do something
elif second_command
then
 #do something
...
else
 #do something
fi

At an if or elif statement the command is executed and the return value is evaluated. Multiple
elifs are allowed, but only a single else is. Both elif and else are optional. If no evaluation
succeeds and no else statement is included, nothing in the “body” of the statement is executed.

An example:

if test "$ANSWER" = "Yes"
then
 echo "Thank you."
elif test "$ANSWER" = "No"
then
 echo "I hope you'll reconsider soon."
else
 echo "Please answer Yes or No."
fi

More on the test command in the end of this chapter.

There is a simplified mechanism for alternation available which uses the && and || constructs:

command1 && command2

This will execute command 1 and if the exitcode is zero, it will execute command 2.

command1 || command 2

This will execute command 1 and if the exitcode is non-zero, it will execute command 2.
They can also be combined:

command1 && command2 || command3

Execute either command2 or command3 depending on the exitcode of command1.
Example:

grep “foo” $HOME/bar > /dev/null 2>&1 && echo “Foo is listed” \
|| echo “Nothing found”

Unix Crash Course Page 23

The case statement only evaluates variable values. The syntax is:

case string in
value-list1)

#do something
;;
value-list2)

#do something
;;
...

esac

It is useless to evaluate a literal string, so in general a variable will be placed in the position. The
value-lists are one or more values separated by the pipe character. If any of these values match the
string, the commands up to the next ;; are executed. If multiple values match the string, only the
first matching entry is executed. Globbing rules apply to the values when matching with the string.
Example:

case $1 in
 start|stop) /usr/sbin/sshd $1
 ;;
 restart)
 $0 stop
 $0 start
 ;;
 reload)
 ;;
 *)
 echo "Usage: $0 start|stop|restart|reload"
 exit 1
 ;;
esac

The while statement will execute one or more statements repetitively (this is called a loop) as long
as the condition is true. The condition is a command and its exit value is evaluated. The syntax is:

while command
do

#loop body
done

It is clear that either in the loop body or externally something should happen to have the command
return a non-zero value eventually or else the loop will keep executing forever. The check on the
command can also be inverted by using “until” instead of “while”.

During execution of the loop body it is possible to disregard the rest of the statements and either exit
the loop or start the next incarnation immediately. You can exit the loop with the break command
and start the next instance of the loop with the continue command.

The for statement will execute one or more statements repetitively while assigning different values
to a variable during each incarnation. The syntax is:

Unix Crash Course Page 24

for variable in value-list
do

#loop body
done

The value-list contains whitespace-separated values and with each incarnation the variable will be
assigned the next value of this list. The break and continue statements work in the for loop as
well.
Example:

for name in foo bar quux*
do
 test -d $name && tar cf $HOME/backup/$name.tar $name
done

A command that is used very often in if and while statements is the test command. This
command is a shell builtin command that can do various comparative operations on strings,
numbers and files. The command can be written down in two ways, as “test expression” or
as “[expression]”. It is possible to make boolean combinations of various expressions
including negation and preferencing. Some tests that are supported are string equality, comparative
values of numbers, filetypes etc. See the manpage for a complete list. test will exit with a zero
value on success and a non-zero value on failure.

6.4 Regular expressions
Regular expressions (usually shorted as regexps) are constructs that are used extensively in many
programs in the Unix environment, such as grep, perl, sed, awk, multitail and vi.
Formally, regexps constitute the language of strings that can be expressed by a state transition
diagram (STD). This enables powerful data-structures that can parse the text efficiently. Although
many tools support regexps, their syntax differs a bit. The basic syntax is as follows.

• A string is a concatenation of characters and is recognized as itself.
• A dot is a placeholder for any character.
• If a string of characters is encloses in square brackets ([]) a single character from that string

is recognized. If the closing bracket needs to be recognized, it should be placed as the first
character in the string. Ranges of characters can be specified with a dash (e.g.
[A−Za−z0−9]: this will recognize a single alphanumeric character). The string can be
negated by preceding it with a caret (e.g. [^0−9] denotes a single non-numeric character.

• An asterisk (*) denotes zero or more repetitions of the previous character.
• Starting the regexp with a caret (^) binds it to the start of the line. Ending it with a dollar

sign ($) will bind it to the end of the line. Binding can also be done with \< and \> to bind
the regexp to the beginning and end of a word respectively.

• Separating two regexps with a pipe symbol (|) will recognize any of the regexps. In basic
regexps, the pipe symbol has no special meaning and should be escaped with a backslash
(\|) to gain this functionality.

• Part of a regexp may be grouped within parentheses and referenced with \n where n is the
number that corresponds to the nth grouping. Like with the pipe symbol, parentheses have
no special meaning in basic regexps and need to be escaped. So the (basic) regexp “\
(abc\)\(def\)xxx\2\1” will recognize the string “abcdefxxxdefabc.”.

• In extended regexps (such as in perl and egrep, the repetitions of a character can be
quantified.

Unix Crash Course Page 25

• {n} – the character is repeated exactly n times.
• {,n} – the character is repeated at most n times.
• {n,} – the character is repeated at least n times.
• {n,m} – the character is repeated at least n and at most m times.
It is also possible to use a plus sign (+) to specify at least one repetition of the character or
the question mark (?) for zero or one instances of the character.

6.5 sed and awk
Before the heydays of perl, most jobs of parsing and modifying text automatically was done with
a combination of sed and awk. Though perl and other scripting languages like python have
generally taken over that part, sed and awk are still used, mostly for the simpler and quick-and-
dirty jobs.

6.5.1 sed
sed is a stream editor. It will read stdin or one or more files and send the modified text to stdout.
sed takes an optional range specifier and a command or multiple commands enclosed in curly
braces. Lined that are unaffected by either the range specifier or the command are printed
unchanged to stdout. Take for instance an email in the Unix “mbox” format. This contains the
headers (Date:, Subject: etc.), followed by an empty line, followed by the mail body. If we would
only be interested in the body and we have the complete mail text in stdin, we could strip the
headers with

sed -e '1,/^$/d'

Here the range is “1,/^$/” which specifies the range from the first line to the first occurrence of
the regular expression “^$”, which is an empty line. The command is “d”, which deletes the lines
from the stream.

If the range is omitted, all lines are subjected to the command. The range can be a single number or
regexp or it can be two numbers and/or regexps separated by a comma. Using a single range
element indicates that only the specified line will be subjected to the command. Two range elements
indicate a range from the first line number or regexp occurrence to the last, including both specified
lines. A single dollar sign denotes the last line. A few commands require only a single range
element. In the range field, a regexp must be delimited by slashes (/).

If multiple commands are given surrounded by curly braces ({}) each command and the closing
brace must be on separate lines. Some of the most common commands are:

• Substitute. The syntax is “s/regexp/replacement/flags”. Unlike the regexp in the
range, the slash can be substituted by any character as long as all three characters are
identical. In the substitution references to groups (\n where n is a number) are allowed. The
ampersand (&) denotes the complete recognized string. Flags are optional and are used e.g.
for replacing all occurrences on the line (g), or do the match case insensitive (i, GNU
extension).

• Delete. The syntax is “/regexp/d”. This will delete entire lines that match the regexp.
The regexp is optional and when omitted, the command will delete all lines.

• Append/Insert. The syntax is atext or itext. A single range parameter is mandatory and
the text is inserted either after (a) or before (i) the specified line.

Unix Crash Course Page 26

6.5.2 awk
awk is a programming language that is especially useful for parsing text and acting upon that. It is
named after its designers Al Aho, Peter Weinberger and Brian Kernighan. The language was
extended some time after its invocation, and to distinguish between the old and new syntax, the new
one was named nawk (new awk). The GNU project created their own free version which is
compatible with nawk and named it gawk. In the next paragraphs awk refers to the nawk syntax.
awk works on one or more files specified on the command line, or on stdin if no files are specified.
The structure of an awk program is:

pattern { statements block }
pattern { statements block }
...

The pattern is optional. Without a pattern all lines from the input are subjected to the corresponding
statements. Two patterns are special: BEGIN and END. All statement blocks with a BEGIN pattern
are executed before any lines are read from input. The same goes for blocks that are preceded by the
END pattern but these execute after all input lines have been read. The pattern may be any of:

• /pattern/ – a regular expression. In awk the extended regexp syntax is used (like in
egrep).

• a relational expression (e.g. a < b, $4 ~ /foo/, etc)
• A boolean construct of patterns with && (boolean and), || (boolean or) and ! (boolean

not). Parentheses alter the evaluation order.
• pattern ? pattern : pattern – alternative pattern evaluation, the syntax

compares to that of the C programming language.
• pattern1, pattern2 – specify a range of input lines from the line containing

pattern1 to the line containing pattern2 , inclusive.

The input line is divided in multiple “fields”, separated by whitespace (unless the variable FS is
redefined). These are accessed with the field variables $n where n is a number. $0 indicates the
whole line. variables are just alphanumeric names starting with a letter and are referenced like that
(comparable to the C programming language). awk recognizes string and numeric variables
(without explicit declarations) and arrays of variables (arrays in awk are associative, which means
that the array index does not need to be numeric and even if it is numeric it is treated as a string.
Arrays are noted with square brackets like arrayname[index].

The statement block can consist of multiple statements separated by semicolons (;). A statement
can consist of an action statement (like print), or a flow statement (if, for, do while, etc.)
which itself has one or more action statements of its own. Multiple action statements that belong to
a flow statement can be combined in a block of its own, surrounded by braces. The syntax of the
flow statements is again very much like C. For example, the next program calculates the first 10
Fibonacci numbers:

Unix Crash Course Page 27

awk 'BEGIN { cnt=0
a=0
b=1
while (cnt < 10)
{ cnt++

c=a+b
a=b
b=c
print "Fib(" cnt ") is "c

}
}'

awk is often used for simple parsing jobs in shell scripts like print only the filesizes in a directory:

ls -l | awk '{print $5}'

or sum the filesizes:

ls -l | awk '{sum += $5} END {print sum}'

or sum the filesizes of only executable files:

ls -l | awk '$1 ~ /^-.*x/ {sum += $5} END {print sum}'

7 Miscellaneous

7.1 Editors
Very much of Unix considers text files. Most of the tools mentioned here expect plain text input
and/or produce it. An important tool in the OS is a text editor with which the user can create or
modify text files. The earliest Unices used ed as the standard editor. This is a line-based editor
where users can modify the text based on commands that apply to the current line or a range of
lines. It is nearly identical to sed with the exception of using it interactively.

These days the standard editor on about every Unix is vi, written by one of the original BSD
developers named Bill Joy. This is derived from a descendant from ed named ex, but can switch
between “visual” editing and “line” editing. In its line mode it is very comparable to ed. Though it
has a steep learning curve, it is extremely powerful and efficient which makes it the editor of choice
for most Unix administrators and consultants. vi knows 2 modes of operation, insert mode and
command mode. From command mode you get into insert mode with the commands i, I, a, A, o,
O, s, S, c or C. These differ in where the cursor is placed and whether text is deleted in the process.
To get back to command mode, the <Esc> key should be pressed. In command mode the cursor
can be moved around the text, blocks of text can be cut and/or pasted, etc. Also from command
mode, an ex command can be issued by typing a colon (:) followed by the command. All searches
in vi are based on regular expressions.

There is a large number of alternatives available for editing text, but most of these are not installed
by default on a Unix system. The best known is emacs, which was intended to be an integral part
of the GNU system. emacs is a lot more than just a text editor, it can read mail, it can do file
management and access remote files as if they were local, it is extendable by LISP programs, etc.

Unix Crash Course Page 28

emacs is sometimes regarded as a shell of its own. There are also many “flamewars” on the
Internet between the Unix administrators of “vi-camp” and the “emacs-camp”. Most modern shells
(tcsh, bash, zsh) use key bindings from emacs for command editing.
Another popular editor is pico. This is the editor that is distributed as part of the mail and news
reader pine. The look and feel is mostly comparable to “Wordstar” that was used on the DOS
platform in the eighties. Because of some license restrictions, a clone of pico was created and
named nano.

When we talk about editing text files, we should note one aspect where Unix differs from other
operating systems, i.e. in the line ending of text files. This is mostly visible when comparing texts
made on Unix with texts made on a Windows system. A DOS or Windows text editor will create
lines that end with 2 control characters, the “carriage return” (CR) followed by the “line feed” (LF).
This is derived from how a mechanical typewriter works. In Unix, lines end with only the LF. CR
has an ASCII value of 13 and LF has a value of 10. When viewing a file created on Windows in a
Unix environment, the CR characters are displayed as “^M”:

Hello Reader,^M
This demonstrates how^M
line ends differ.^M

When a file is created on Unix and viewed with certain programs in DOS or Windows, you get a
“staircase effect” or the LF is printed as a special character and everything gets printed on the same
line. There are tools to transfer from DOS to Unix line ends (dos2unix, fromdos) and the other
way around (unix2dos, todos) but it can also be done with sed:

sed -e 's/\r$//' < dosfile > unixfile
sed -e 's/$/\r/' < unixfile > dosfile

7.2 Programming
As previously mentioned, Unix is a big toolbox with a lot of small tools that can be combined to
create the needed functionality. Sometimes though, a specific tool may be lacking. For those
purposes almost every modern Unix has a C compiler and the essential C libraries to create your
own binary or compile a program from another environment for the current one:

$ cat hw.c
#include <stdio.h>

int main(int argc, char **argv)
{
 printf("%s\n", "Hello, World!");
 return 0;
}

$ cc hw.c
$./a.out
Hello, World!
$

For programs that are slightly more complex than this, the make program can be used. Though
make is generally used for development purposes, it is in fact a kind of scripting.

Unix Crash Course Page 29

The general syntax is:

target: prerequisites
command
...

The target is the argument that is given to the make command. It will execute all commands in the
given target block. All command entries must be preceded by the literal TAB character. If the
prerequisite files don't exist. make will look for a target with the name of the file and execute those
commands. Calling make without an argument will cause it to search for the target all:. If we
take our hw.c file above as an example, make could be used like this:

$ cat Makefile
all: hw.o

cc -o hw hw.o

hw.o: hw.c
cc -c hw.c

$ make
cc -c hw.c
cc -o hw hw.o
$./hw
Hello, World!
$

Appendix A: Manpage Syntax
Manpages are divided in different sections. Often the number of the section is added in parentheses
after the subject to indicate which section is meant, like passwd(1) or passwd(5). In the first
case, the passwd entry in section 1 of the manpages is indicated, i.e. the entry for the passwd
command. The entry in section 5 deals with the format of the file /etc/passwd. For a complete
listing of the sections and what kind of manpage to expect there, see the manpage for the man
command. Some environments, most notably perl, include an addition to the section to indicate
the environment, e.g. Time::ParseDate(3pm). A manpage may look (in part) like the
following:

Unix Crash Course Page 30

MAN(1) Manual pager utils MAN(1)

NAME
 man - an interface to the on-line reference manuals

SYNOPSIS
 man [-c|-w|-tZ] [-H[browser]] [-T[device]] [-adhu7V] [-i|-I]
 [-m system[,...]] [-L locale] [-p string] [-C file] [-M path]
 [-P pager] [-r prompt] [-S list] [-e extension] [[section]
 page ...] ...
 man -l [-7] [-tZ] [-H[browser]] [-T[device]] [-p string] [-P
 pager] [-r prompt] file ...
 man -k [apropos options] regexp ...
 man -f [whatis options] page ...

DESCRIPTION
 man is the system's manual pager. Each page argument given to
 man is normally the name of a program, utility or function.

The SYNOPSIS part will give the syntax of the command with all possible options. When
commands are very closely related, they are sometimes documented with the same manpage where
the SYNOPSIS will show the various versions (e.g. printf(3)). Optional arguments are
enclosed in square brackets and mutually exclusive arguments are seperated by pipe symbols. An
ellipsis (...) indicates possible repetitions of the last argument. The sections that follow give in-
depth descriptions of the commands and options and may also refer to related files and other
manpages.

Appendix B: Common Unix commands
command builtin description

. y execute a script without forking and return (source)

: y return a zero value (same as true)

[y test conditions (man test)

at execute a command at a later time

awk text parsing language

basename strip path from a filename

bc CLI calculator with infix notation

bg y continue running a process in the background

cal print a calendar

cat catenate standard input or file(s) to standard output

cc compile a C program

cd y change directory

chgrp change group ownership

chmod change file permission mode

Unix Crash Course Page 31

command builtin description

chown change user ownership

cmp compare two files

compress compress files with the LZW algorithm

cp copy files

cpio create an archive of a list of files

crontab show or set scheduled tasks

cut manage columns of text

date show or set the date and time

dc CLI calculator with postfix notation

dd copy and convert data stream

df show available space on file-systems

diff print difference between two textfiles

dirname print only path component of a filename

du calculate disk usage of a files or directories

dump make a file-system based backup

echo y print arguments

ed CLI text editor

egrep search text based extended regular expressions

eval y perform globbing and variable expansion, then execute line

exec y pass control of the shell to a program

exit y terminate the current shell

export y make variables available to subshells

expr evaluate expressions

false return a non-zero value

fg y bring suspended or background job to foreground

fgrep search text based on fixed substrings

file determine file content

find search files based on constraints

finger view login information of a (remote) user

fmt reformat text

gcc GNU C compiler

grep search text based on regular expressions

gunzip unpack a gzip-compressed file

gzip compress a file with the Lempel-Ziv algorithm

jobs y show backgrounded and suspended jobs

Unix Crash Course Page 32

command builtin description

join join two text files based on a common field

kill y send a signal to a process or job

ld combine object files to a single binary

ln create hard or soft links to files

lpr print a file to a printer

ls show directory content

m4 create text output based on a macro language

mail send or read electronic mail

make execute commands based on targets and prerequisites

man show manual page

mesg control write access to your terminal

mkdir create a directory

mknod create device file

more show text one page at a time

mount attach a file-system to the directory tree

mv rename or move filenames

nawk same as awk, new syntax

newgrp y change default group

nice start a process with a specified priority

nohup prevent process hangup after shell exit

nroff typesetting system for documents

od octal (and hex and character) dump of a binary file

passwd change login password

ping test TCP/IP connectivity with remote host

pr format text for printing

ps list processes and their status

pwd y print the current directory

read y read a line from input and assign it to variables

renice change the priority of a process

restor restore files from a backup with dump

rm remove files

rmdir remove empty directories

roff typesetting system for documents

scp copy files via encrypted network connections

sed stream editor

Unix Crash Course Page 33

command builtin description

set y set shell mode and/or assign values to positional variables

shift y remove the first (few) positional variables from argument list

sleep y do nothing for specified number of seconds

sort sort lines in a file

split split a file into multiple parts

ssh execute commands on remote host via encrypted connection

strip remove debugging code from binary executable

stty set or show tty parameters

su switch user

sum calculate checksum

sync write cache to disks

tail show last few lines of a text file

tar create archive of files to file or device

tee copy standard output to a file

telnet login to a remote host

test y test conditions

time calculate the time that a program runs

touch renew timestamp of a file

tr translate or delete text characters

trap y execute specified command if signal is received

troff typesetting system for documents

true return a zero value

type y show path of command according to the shell

tty show TTY identifier

ulimit y show or modify resource limits

umask y create mask for permission bits on new files and directories

umount detach a file-system from the directory tree

uname print system information

uncompress uncompress a file (not suitable for gzip-ed files)

uniq remove duplicate lines

unset y remove the value from a shell variable

vi edit a text in visual mode

wait y wait for a process and return its exit value

wall send a message to all users

wc count characters, words and lines in a text

Unix Crash Course Page 34

command builtin description

which show path of command according to $PATH variable

who print logged-in users

write send a message to another user

xargs transfer standard input to command line arguments

yes keep repeating a text until the process is killed

zcat uncompress files or standard input to standard output

Appendix C: Exercises
The exercises presented here suppose that the reader has already familiarized herself with basic file
management like copying, renaming, linking and deleting files and directories. The exercises
combine many parts of the material and relevant manpages will have to be examined for the specific
options.

Exercise 1:
What is the syntax of the substitute command to use with sed to replace all consecutive underscore
characters (_) with the text “Mrs. Johnson”?

Exercise 2:
How do you delete a file with the name “-rf .”?

Exercise 3:
What is the command line to delete all files in a directory tree where the files exceed 500 kB in
size? What is the command line to move all these files to ./bigfiles?

Exercise 4:
Write a script that will “unlink” all files in its arguments that are hard links, i.e. if the file has
multiple links, copy it, delete the original and rename the copy to the original name. For all files
with single names, print a message that it was already unlinked. Beware of limited disk space!

Exercise 5:
Write a script that expects two directory names as arguments. Then calculate the sum of the file
sizes of all filenames that are present in the first directory but not in the second (hint: look at the “-
u” option in the manpage of uniq).

Unix Crash Course Page 35

	1 A brief history of Unix
	2 The structure of a Unix system
	3 Files and file-systems
	3.1 File permissions

	4 Interacting with a Unix OS
	4.1 Variables, quoting and globbing
	4.2 Redirection and piping
	4.3 Forks, jobs and processes
	4.4 Scheduling
	4.5 Shell initialization

	5 Networking
	5.1 The graphical user interface

	6 Shell scripting
	6.1 Shell functions
	6.2 Here-document
	6.3 Flow control
	6.4 Regular expressions
	6.5 sed and awk
	6.5.1 sed
	6.5.2 awk

	7 Miscellaneous
	7.1 Editors
	7.2 Programming

	Appendix A: Manpage Syntax
	Appendix B: Common Unix commands
	Appendix C: Exercises

